Temporal Frequency and Velocity-Like Tuning in the Pigeon Accessory Optic System

Author:

Crowder Nathan A.1,Dawson Michael R.W.2,Wylie Douglas R.W.21

Affiliation:

1. Division of Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

2. Department of Psychology, University of Alberta, Edmonton, Alberta T6G 2E9, Canada

Abstract

Neurons in the accessory optic system (AOS) and pretectum are involved in the analysis of optic flow and the generation of the optokinetic response. Previous studies found that neurons in the pretectum and AOS exhibit direction selectivity in response to large-field motion and are tuned in the spatiotemporal domain. Furthermore, it has been emphasized that pretectal and AOS neurons are tuned to a particular temporal frequency, consistent with the “correlation” model of motion detection. We examined the responses of neurons in the nucleus of the basal optic root (nBOR) of the AOS in pigeons to large-field drifting sine wave gratings of varying spatial (SF) and temporal frequencies (TF). nBOR neurons clustered into two categories: “Fast” neurons preferred low SFs and high TFs, and “Slow” neurons preferred high SFs and low TFs. The fast neurons were tuned for TF, but the slow nBOR neurons had spatiotemporally oriented peaks that suggested velocity tuning (TF/SF). However, the peak response was not independent of SF; thus we refer to the tuning as “apparent velocity tuning” or “velocity-like tuning.” Some neurons showed peaks in both the fast and slow regions. These neurons were TF-tuned at low SFs, and showed velocity-like tuning at high SFs. We used computer simulations of the response of an elaborated Reichardt detector to show that both the TF-tuning and velocity-like tuning shown by the fast and slow neurons, respectively, may be explained by modified versions of the correlation model of motion detection.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Reference82 articles.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3