Persistence of reduced neuromotor noise in long-term motor skill learning

Author:

Huber Meghan E.1,Kuznetsov Nikita2,Sternad Dagmar2345

Affiliation:

1. Department of Bioengineering, Northeastern University, Boston, Massachusetts;

2. Department of Biology, Northeastern University, Boston, Massachusetts;

3. Department of Electrical and Computer Engineering Northeastern University, Boston, Massachusetts;

4. Department of Physics, Northeastern University, Boston, Massachusetts; and

5. Center for the Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts

Abstract

It is well documented that variability in motor performance decreases with practice, yet the neural and computational mechanisms that underlie this decline, particularly during long-term practice, are little understood. Decreasing variability is frequently examined in terms of error corrections from one trial to the next. However, the ubiquitous noise from all levels of the sensorimotor system is also a significant contributor to overt variability. While neuromotor noise is typically assumed and modeled as immune to practice, the present study challenged this notion. We investigated the long-term practice of a novel motor skill to test whether neuromotor noise can be attenuated, specifically when aided by reward. Results showed that both reward and self-guided practice over 11 days improved behavior by decreasing noise rather than effective error corrections. When the challenge for obtaining reward increased, subjects reduced noise even further. Importantly, when task demands were relaxed again, this reduced level of noise persisted for 5 days. A stochastic learning model replicated both the attenuation and persistence of noise by scaling the noise amplitude as a function of reward. More insight into variability and intrinsic noise and its malleability has implications for training and rehabilitation interventions.

Funder

HHS | NIH | National Institute of Child Health and Human Development (NICHD)

National Science Foundation (NSF)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3