Functional and neuronal binocularity in kittens raised with rapidly alternating monocular occlusion

Author:

Altmann L.1,Luhmann H. J.1,Greuel J. M.1,Singer W.1

Affiliation:

1. Max Planck Institute for Brain Research, Frankfurt, Federal Republicof Germany.

Abstract

1. In order to determine the degree of synchrony of binocular activation required for the development of binocularity we reared 11 kittens with rapidly alternating monocular occlusion. Alternating occlusion was achieved with microprocessor-controlled electrooptic solid-state shutters, which were fitted to individually moulded goggles. The intervals of alternating occlusion were varied from 50 to 1,000 ms. Two normally reared kittens and three kittens that were reared with the shutters operating synchronously with open/close intervals of 50/50 ms, 200/200 ms, and 400/100 ms, respectively, were used as controls. Toward the end of the critical period we examined the kittens' ability for binocular depth discrimination and tested binocular luminance summation of the pupillary light reflex. Single-cell recordings were made from the visual cortex in order to determine the percentages of binocularly excitable neurons. 2. There was a good correlation between the degree of asynchrony of binocular experience, the impairment of depth discrimination, and the percentage of binocular neurons. Kittens reared with alternation rates of 200, 330, and 400 ms, respectively, had developed normal binocularity and were indistinguishable from the controls. Alternation rates of 500 ms or longer prevented the development of normal depth discrimination and luminance summation and resulted in reduced cortical binocularity. 3. A linear relationship between depth discrimination, binocular luminance summation, and percentages of binocular neurons was found. 4. Our findings indicate that an asynchrony of binocular activation of several hundred milliseconds is compatible with the development of normal binocularity in the kitten visual system.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3