Effect of high-fat diet on secreted milk transcriptome in midlactation mice

Author:

Chen Y.1,Wang J.2,Yang S.1,Utturkar S.3,Crodian J.1,Cummings S.1,Thimmapuram J.2,San Miguel P.4,Kuang S.1,Gribskov M.3,Plaut K.1,Casey T.1ORCID

Affiliation:

1. Department of Animal Sciences, Purdue University, West Lafayette, Indiana

2. Department of Biological Sciences, Purdue University, West Lafayette, Indiana

3. Bioinformatics Core, Purdue University, West Lafayette, Indiana

4. Genomics Core at Purdue University, West Lafayette, Indiana

Abstract

High-fat diet (HFD) during lactation alters milk composition and is associated with development of metabolic diseases in the offspring. We hypothesized that HFD affects milk microRNA (miRNA) and mRNA content, which potentially impact offspring development. Our objective was to determine the effect of maternal HFD on secreted milk transcriptome. To meet this objective, 4 wk old female ICR mice were divided into two treatments: control diet containing 10% kcal fat and HFD containing 60% kcal fat. After 4 wk on CD or HFD, mice were bred while continuously fed the same diets. On postnatal day 2 (P2), litters were normalized to 10 pups, and half the pups in each litter were cross-fostered between treatments. Milk was collected from dams on P10 and P12. Total RNA was isolated from milk fat fraction of P10 samples and used for mRNA-Seq and small RNA-Seq. P12 milk was used to determine macronutrient composition. After 4 wk of prepregnancy feeding HFD mice weighed significantly more than did the control mice. Lactose and fat concentration were significantly ( P < 0.05) higher in milk of HFD dams. Pup weight was significantly greater ( P < 0.05) in groups suckled by HFD vs. control dams. There were 25 miRNA and over 1,500 mRNA differentially expressed (DE) in milk of HFD vs. control dams. DE mRNA and target genes of DE miRNA enriched categories that were primarily related to multicellular organismal development. Maternal HFD impacts mRNA and miRNA content of milk, if bioactive nucleic acids are absorbed by neonate differences may affect development.

Funder

This activity was funded, by Purdue, as part of AgSEED Crossroads funding to support Indiana's

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3