Overlapping genes inNalp6/PYPAF5locus encode two V2-type vasopressin isoreceptors: angiotensin-vasopressin receptor (AVR) and non-AVR

Author:

Herrera Victoria L. M.1,Bagamasbad Pia1,Didishvili Tamara1,Decano Julius L.1,Ruiz-Opazo Nelson1

Affiliation:

1. Section of Molecular Medicine, Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts

Abstract

The angiotensin-vasopressin receptor (AVR) responds with equivalent affinities to angiotensin II (ANG II) and vasopressin and is coupled to adenylate cyclase and hence a V2-type vasopressin receptor. AVR maps to the Nalp6 locus and overlaps with the larger Nalp6/PYPAF5 reported to be a T cell/granulocyte-specific, cytoplasmic-specific proapoptotic protein, thus questioning the existence of AVR. Here we confirm, through different experimental modalities, that AVR is distinct from Nalp6/PYPAF5 based on different mRNA and protein sizes, subcellular localization, and tissue-specific expression patterns. Binding studies of PYPAF5-specific Cos1 transfectants detect high-affinity binding to vasopressin but not ANG II, thus assigning PYPAF5 as a non-AVR (NAVR). Signaling array analysis reveals that AVP stimulation of AVR- and NAVR-specific Cos1 transfectants results in diametrical activation as well as coactivation of signaling pathways known to mediate renal sodium and water balance. Likewise, ANG II stimulation of Cos1-AVR transfectants reveals a signaling profile distinct from that of AVP-stimulated Cos1-AVR transfectants. Analysis of genomic organization of the AVR/NAVR locus shows an overlapping gene arrangement with alternative promoter usage resulting in different NH2termini for NAVR and AVR. In addition to core promoter elements, androgen and estrogen response elements are detected. Promoter analysis of NAVR/AVR 5′-regulatory region detects transcriptional upregulation by testosterone and synergistic upregulation by testosterone and estrogen, thus suggesting that AVR and/or NAVR contribute to sex-specific V2-type vasopressin-mediated effects. Altogether, confirmation of AVR and identification of NAVR as vasopressin receptors are concordant with emerging vasopressin functions not attributable to V1a, V1b, or V2 receptors and add molecular bases for the multifunctional complexity of vasopressin-mediated functions and regulation.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3