Kidney cell type-specific changes in the chromatin and transcriptome landscapes following epithelial Hdac1 and Hdac2 knockdown

Author:

Hyndman Kelly A.1ORCID,Crossman David K.2

Affiliation:

1. Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama

2. The UAB Genomics Core Facility, Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama

Abstract

Recent studies have identified at least 20 different kidney cell types based upon chromatin structure and gene expression. Histone deacetylases (HDACs) are epigenetic transcriptional repressors via deacetylation of histone lysines resulting in inaccessible chromatin. We reported that kidney epithelial HDAC1 and HDAC2 activity is critical for maintaining a healthy kidney and preventing fluid-electrolyte abnormalities. However, to what extent does Hdac1/Hdac2 knockdown affect chromatin structure and subsequent transcript expression in the kidney? To answer this question, we used single nucleus assay for transposase-accessible chromatin-sequencing (snATAC-seq) and snRNA-seq to profile kidney nuclei from male and female, control, and littermate kidney epithelial Hdac1/Hdac2 knockdown mice. Hdac1/Hdac2 knockdown resulted in significant changes in the chromatin structure predominantly within the promoter region of gene loci involved in fluid-electrolyte balance such as the aquaporins, with both increased and decreased accessibility captured. Moreover, Hdac1/Hdac2 knockdown resulted different gene loci being accessible with a corresponding increased transcript number in the kidney, but among all mice only 24%–30% of chromatin accessibility agreed with transcript expression (e.g., open chromatin and increased transcript). To conclude, although chromatin structure does affect transcription, ∼70% of the differentially expressed genes cannot be explained by changes in chromatin accessibility and HDAC1/HDAC2 had a minimal effect on these global patterns. Yet, the genes that are targets of HDAC1 and HDAC2 are critically important for maintaining kidney function.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3