Proteomic approach to coronary atherosclerosis shows ferritin light chain as a significant marker: evidence consistent with iron hypothesis in atherosclerosis

Author:

You Sun-Ah12,Archacki Stephen R.123,Angheloiu George4,Moravec Christine S.4,Rao Shaoqi12,Kinter Michael5,Topol Eric J.12,Wang Qing123

Affiliation:

1. Center for Molecular Genetics, Department of Molecular Cardiology, Cleveland Clinic Foundation, Cleveland 44195

2. Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland 44195

3. Department of Biology, Cleveland State University, Cleveland 44115

4. Kaufman Center for Heart Failure, Department of Cardiovascular Medicine, Cleveland, Ohio 44195

5. Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195

Abstract

Coronary artery disease (CAD) is the leading cause of mortality and morbidity in developed nations. We hypothesized that CAD is associated with distinct patterns of protein expression in the coronary arteries, and we have begun to employ proteomics to identify differentially expressed proteins in diseased coronary arteries. Two-dimensional (2-D) gel electrophoresis of proteins and subsequent mass spectrometric analysis identified the ferritin light chain as differentially expressed between 10 coronary arteries from patients with CAD and 7 coronary arteries from normal individuals. Western blot analysis indicated significantly increased expression of the ferritin light chain in the diseased coronary arteries (1.41 vs. 0.75; P = 0.01). Quantitative real-time PCR analysis showed that expression of ferritin light chain mRNA was decreased in diseased tissues (0.70 vs. 1.17; P = 0.013), suggesting that increased expression of ferritin light chain in CAD coronary arteries may be related to increased protein stability or upregulation of expression at the posttranscriptional level in the diseased tissues. Ferritin light chain protein mediates storage of iron in cells. We speculate that increased expression of the ferritin light chain may contribute to pathogenesis of CAD by modulating oxidation of lipids within the vessel wall through the generation of reactive oxygen species. Our results provide in situ proteomic evidence consistent with the “iron hypothesis,” which proposes an association between excessive iron storage and a high risk of CAD. However, it is also possible that the increased ferritin expression in diseased coronary arteries is a consequence, rather than a cause, of CAD.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3