Author:
King Jennifer Y.,Ferrara Rossella,Tabibiazar Raymond,Spin Joshua M.,Chen Mary M.,Kuchinsky Allan,Vailaya Aditya,Kincaid Robert,Tsalenko Anya,Deng David Xing-Fei,Connolly Andrew,Zhang Peng,Yang Eugene,Watt Clifton,Yakhini Zohar,Ben-Dor Amir,Adler Annette,Bruhn Laurakay,Tsao Philip,Quertermous Thomas,Ashley Euan A.
Abstract
Large-scale gene expression studies provide significant insight into genes differentially regulated in disease processes such as cancer. However, these investigations offer limited understanding of multisystem, multicellular diseases such as atherosclerosis. A systems biology approach that accounts for gene interactions, incorporates nontranscriptionally regulated genes, and integrates prior knowledge offers many advantages. We performed a comprehensive gene level assessment of coronary atherosclerosis using 51 coronary artery segments isolated from the explanted hearts of 22 cardiac transplant patients. After histological grading of vascular segments according to American Heart Association guidelines, isolated RNA was hybridized onto a customized 22-K oligonucleotide microarray, and significance analysis of microarrays and gene ontology analyses were performed to identify significant gene expression profiles. Our studies revealed that loss of differentiated smooth muscle cell gene expression is the primary expression signature of disease progression in atherosclerosis. Furthermore, we provide insight into the severe form of coronary artery disease associated with diabetes, reporting an overabundance of immune and inflammatory signals in diabetics. We present a novel approach to pathway development based on connectivity, determined by language parsing of the published literature, and ranking, determined by the significance of differentially regulated genes in the network. In doing this, we identify highly connected “nexus” genes that are attractive candidates for therapeutic targeting and followup studies. Our use of pathway techniques to study atherosclerosis as an integrated network of gene interactions expands on traditional microarray analysis methods and emphasizes the significant advantages of a systems-based approach to analyzing complex disease.
Publisher
American Physiological Society
Cited by
135 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献