Maternal vitamin A alters gene profiles and structural maturation of the rat ductus arteriosus

Author:

Yokoyama Utako1,Sato Yoji2,Akaike Toru1,Ishida Seiichi3,Sawada Junichi4,Nagao Taku2,Quan Hong1,Jin Meihua1,Iwamoto Mari5,Yokota Shumpei5,Ishikawa Yoshihiro16,Minamisawa Susumu17

Affiliation:

1. Department of Physiology, Yokohama City University, Yokohama

2. Division of Cellular and Gene Therapy Products, National Institute of Health Sciences, Tokyo

3. Division of Pharmacology, National Institute of Health Sciences, Tokyo

4. Division of Biochemistry and Immunochemistry, National Institute of Health Sciences, Tokyo

5. Department of Pediatrics, Yokohama City University, Yokohama, Japan

6. Department of Cell Biology and Molecular Medicine and Medicine (Cardiology), New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey

7. Department of Life Science and Medical Bio-Science, Waseda University, Tokyo, Japan

Abstract

Retinoic acid (RA), a metabolite of vitamin A, has been proposed to regulate vascular remodeling and reactivity of the ductus arteriosus (DA). Using rat Affymetrix GeneChips, we found that a considerable number of genes in DA varied their expression levels in accordance with developmental mode: namely, preterm-, term-, and postnatal-dominant clusters. Among a total of 8,740 probe sets, maternal vitamin A administration (MVA) changed the expression levels of 91 genes (116 probe sets) >2.5-fold. About half of preterm- and term-dominant genes responded to MVA, whereas only 5% of postnatal-dominant genes responded to MVA, indicating that fetal-dominant genes were susceptible to RA signals. The expression levels of 51 genes in MVA-treated DA at preterm were similar to the expression levels in nontreated DA at term, indicating that the global gene profile at preterm resembled that of the control animal at term. We observed neointima formation in MVA-treated DA at preterm in accordance with upregulation of fibronectin and hyaluronic acid, whereas it was rarely observed in nontreated DA at preterm. Five fetal cardiac myofibrillar genes were also upregulated in MVA-treated in vivo DA, whereas they were developmentally downregulated in nontreated DA. The present study indicates that MVA-mediated alteration in gene profile was associated with early structural maturation of DA, although MVA-mediated maturation may differ from normal vascular remodeling of DA.

Publisher

American Physiological Society

Subject

Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3