Integrative RNA-seq and microarray data analysis reveals GC content and gene length biases in the psoriasis transcriptome

Author:

Swindell William R.1,Xing Xianying1,Voorhees John J.1,Elder James T.1,Johnston Andrew1,Gudjonsson Johann E.1

Affiliation:

1. Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, Michigan

Abstract

Gene expression profiling of psoriasis has driven research advances and may soon provide the basis for clinical applications. For expression profiling studies, RNA-seq is now a competitive technology, but RNA-seq results may differ from those obtained by microarray. We therefore compared findings obtained by RNA-seq with those from eight microarray studies of psoriasis. RNA-seq and microarray datasets identified similar numbers of differentially expressed genes (DEGs), with certain genes uniquely identified by each technology. Correspondence between platforms and the balance of increased to decreased DEGs was influenced by mRNA abundance, GC content, and gene length. Weakly expressed genes, genes with low GC content, and long genes were all biased toward decreased expression in psoriasis lesions. The strength of these trends differed among array datasets, most likely due to variations in RNA quality. Gene length bias was by far the strongest trend and was evident in all datasets regardless of the expression profiling technology. The effect was due to differences between lesional and uninvolved skin with respect to the genome-wide correlation between gene length and gene expression, which was consistently more negative in psoriasis lesions. These findings demonstrate the complementary nature of RNA-seq and microarray technology and show that integrative analysis of both data types can provide a richer view of the transcriptome than strict reliance on a single method alone. Our results also highlight factors affecting correspondence between technologies, and we have established that gene length is a major determinant of differential expression in psoriasis lesions.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3