Transcriptional analysis of brown adipose tissue in leptin-deficient mice lacking inducible nitric oxide synthase: evidence of the role of Med1 in energy balance

Author:

Becerril Sara12,Rodríguez Amaia12,Catalán Victoria12,Sáinz Neira12,Ramírez Beatriz12,Gómez-Ambrosi Javier12,Frühbeck Gema123

Affiliation:

1. Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; and

2. CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; and

3. Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain

Abstract

Leptin and nitric oxide (NO) are implicated in the control of energy homeostasis. The aim of the present study was to examine the impact of the absence of the inducible NO synthase ( iNOS) gene on the regulation of energy balance in ob/ob mice analyzing the changes in gene expression levels in brown adipose tissue (BAT). Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated and the expression of genes involved in energy balance including fatty acid and glucose metabolism as well as mitochondrial genes were analyzed by microarrays. DBKO mice exhibited an improvement in energy balance with a decrease in body weight ( P < 0.001), total fat pads ( P < 0.05), and food intake ( P < 0.05), as well as an enhancement in BAT function compared with ob/ob mice. To better understand the molecular events associated with this improvement, BAT gene expression was analyzed. Of particular interest, gene expression levels of the key subunit of the Mediator complex Med1 was upregulated ( P < 0.05) in DBKO mice. Real-time PCR and immunohistochemistry further confirmed this data. Med1 is implicated in adipogenesis, lipid metabolic and biosynthetic processes, glucose metabolism, and mitochondrial metabolic pathways. Med1 plays an important role in the transcriptional control of genes implicated in energy homeostasis, suggesting that the improvement in energy balance and BAT function of the DBKO mice is mediated, at least in part, through the transcription coactivator Med1.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3