Short-term low-magnesium diet reduces autoimmune arthritis severity and synovial tissue gene expression

Author:

Brenner Max1,Laragione Teresina2,Gulko Pércio S.2

Affiliation:

1. The Feinstein Institute for Medical Research, Manhasset, New York; and

2. Division of Rheumatology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York

Abstract

Magnesium has been suggested to have anti-inflammatory properties in short-term, mostly in vitro studies. To examine the effect of dietary magnesium modifications in arthritis severity and joint damage DA rats were placed on one of three diet regimens before the induction of autoimmune pristane-induced arthritis (PIA): a 4 wk low-magnesium diet, normal diet, and a magnesium-supplemented diet. The diets were switched to a normal diet 14 days after the induction of PIA (typical time of disease onset). Arthritis severity was scored for 38 days, and joints were examined by histology and quantitative PCR for proinflammatory genes. Rats on the low-magnesium diet were significantly and reproducibly protected and had 70% lower median arthritis severity score, with preservation of normal joint histology without erosive changes. Rats on the normal or magnesium-supplemented diets were not protected and developed equally severe and erosive disease. While the dietary modifications were at disease onset ( day 14 postinduction), the protective effect of the short-term low-magnesium diet persisted, suggesting a lasting effect on a critical pathogenic pathway. Rats on the low-magnesium diet had significant reduction in synovial tissue expression of IL-6, RORA, and RORC, which are genes required for the development of Th17 T cells. This study revealed a novel role for dietary magnesium in the regulation of autoimmune arthritis and opens new possibilities for the treatment of autoimmune diseases such as rheumatoid arthritis and psoriatic arthritis with short courses of dietary or drug-induced modulations of magnesium levels.

Publisher

American Physiological Society

Subject

Genetics,Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3