Dynamic taste responses of parabrachial pontine neurons in awake rats

Author:

Baez-Santiago Madelyn A.12,Reid Emily E.3,Moran Anan3245,Maier Joost X.6,Marrero-Garcia Yasmin3,Katz Donald B.132

Affiliation:

1. Biology Department, Brandeis University, Waltham, Massachusetts;

2. Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts;

3. Psychology Department, Brandeis University, Waltham, Massachusetts;

4. Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel;

5. Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; and

6. Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, North Carolina

Abstract

The parabrachial nuclei of the pons (PbN) receive almost direct input from taste buds on the tongue and control basic taste-driven behaviors. Thus it is reasonable to hypothesize that PbN neurons might respond to tastes in a manner similar to that of peripheral receptors, i.e., that these responses might be narrow and relatively “dynamics free.” On the other hand, the majority of the input to PbN descends from forebrain regions such as gustatory cortex (GC), which processes tastes with “temporal codes” in which firing reflects first the presence, then the identity, and finally the desirability of the stimulus. Therefore a reasonable alternative hypothesis is that PbN responses might be dominated by dynamics similar to those observed in GC. Here we examined simultaneously recorded single-neuron PbN (and GC) responses in awake rats receiving exposure to basic taste stimuli. We found that pontine taste responses were almost entirely confined to canonically identified taste-PbN (t-PbN). Taste-specificity was found, furthermore, to be time varying in a larger percentage of these t-PbN responses than in responses recorded from the tissue around PbN (including non-taste-PbN). Finally, these time-varying properties were a good match for those observed in simultaneously recorded GC neurons—taste-specificity appeared after an initial nonspecific burst of action potentials, and palatability emerged several hundred milliseconds later. These results suggest that the pontine taste relay is closely allied with the dynamic taste processing performed in forebrain.

Funder

HHS | National Institutes of Health (NIH)

Charles A. King Trust Fellowship

Swartz Foundation

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3