Cerebral Processing of Acute Skin and Muscle Pain in Humans

Author:

Svensson Peter1,Minoshima Satoshi2,Beydoun Ahmad34,Morrow Thomas J.354,Casey Kenneth L.354

Affiliation:

1. Department of Prosthetic Dentistry and Stomatognathic Physiology, Orofacial Pain Clinic, Royal Dental College, University of Aarhus, DK-8000 Aarhus, Denmark;

2. Department of Nuclear Medicine,

3. Department of Neurology, and

4. Neurophysiology Research Laboratories, Veterans Affairs Medical Center, Ann Arbor, Michigan 48105

5. Department of Physiology, University of Michigan, Ann Arbor; and

Abstract

Svensson, Peter, Satoshi Minoshima, Ahmad Beydoun, Thomas J. Morrow, and Kenneth L. Casey. Cerebral processing of acute skin and muscle pain in humans. J. Neurophysiol. 78: 450–460, 1997. The human cerebral processing of noxious input from skin and muscle was compared with the use of positron emission tomography with intravenous H2 15O to detect changes in regional cerebral blood flow (rCBF) as an indicator of neuronal activity. During each of eight scans, 11 normal subjects rated the intensity of stimuli delivered to the nondominant (left) forearm on a scale ranging from 0 to 100 with 70 as pain threshold. Cutaneous pain was produced with a high-energy CO2 laser stimulator. Muscle pain was elicited with high-intensity intramuscular electrical stimulation. The mean ratings of perceived intensity for innocuous and noxious stimulation were32.6 ± 4.5 (SE) and 78.4 ± 1.7 for cutaneous stimulation and 15.4 ± 4.2 and 73.5 ± 1.4 for intramuscular stimulation. The pain intensity ratings and the differences between noxious and innocuous ratings were similar for cutaneous and intramuscular stimuli ( P > 0.05). After stereotactic registration, statistical pixel-by-pixel summation ( Z score) and volumes-of-interest (VOI) analyses of subtraction images were performed. Significant increases in rCBF to both noxious cutaneous and intramuscular stimulation were found in the contralateral secondary somatosensory cortex (SII) and inferior parietal lobule [Brodmann area (BA) 40]. Comparable levels of rCBF increase were found in the contralateral anterior insular cortex, thalamus, and ipsilateral cerebellum. Noxious cutaneous stimulation caused significant activation in the contralateral lateral prefrontal cortex (BA 10/46) and ipsilateral premotor cortex (BA 4/6). Noxious intramuscular stimulation evoked rCBF increases in the contralateral anterior cingulate cortex (BA 24) and subsignificant responses in the contralateral primary sensorimotor cortex (MI/SI) and lenticular nucleus. These activated cerebral structures may represent those recruited early in nociceptive processing because both forms of stimuli were near pain threshold. Correlation analyses showed a negative relationship between changes in rCBF for thalamus and MI/SI for cutaneous stimulation, and positive relationships between thalamus and anterior insula for both stimulus modalities. Direct statistical comparisons between innocuous cutaneous and intramuscular stimulation with the use of Z scores and VOI analyses showed no reliable differences between these two forms of noxious stimulation, indicating a substantial overlap in brain activation pattern. The comparison of noxious cutaneous and intramuscular stimulation indicated more activation in the premotor cortex, SII, and prefrontal cortex with cutaneous stimulation, but these differences did not reach statistical significance. The similar cerebral activation patterns suggest that the perceived differences between acute skin and muscle pain are mediated by differences in the intensity and temporospatial pattern of neuronal activity within similar sets of forebrain structures.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3