Experimental and Modeling Study of Na+ Current Heterogeneity in Rat Nodose Neurons and Its Impact on Neuronal Discharge

Author:

Schild J. H.1,Kunze D. L.2

Affiliation:

1. Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201; and

2. Rammelkamp Research Center, MetroHealth Medical Center, Cleveland, Ohio 44109

Abstract

Schild, J. H. and D. L. Kunze. Experimental and modeling study of Na+ current heterogeneity in rat nodose neurons and its impact on neuronal discharge. J. Neurophysiol. 78: 3198–3209, 1997. This paper is a combined experimental and modeling study of two fundamental questions surrounding the functional characteristics of Na+ currents in nodose sensory neurons. First, when distinctly different classes of Na+ currents are expressed in the same neuron, is there a significant difference in the intrinsic biological variability associated with the voltage- and time-dependent properties of these currents? Second, in what manner can such variability in functional properties impact the discharge characteristics of these neurons? Here, we recorded the whole cell Na+ currents in acutely dissociated rat nodose sensory neurons using the patch-clamp technique. Two general populations of neurons were observed. A-type neurons ( n = 20) expressed a single rapidly inactivating tetrodotoxin-sensitive (TTX-S) Na+ current. C-type neurons ( n = 87) coexpressed this TTX-S current along with a slowly inactivating TTX-resistant (TTX-R) Na+ current. The TTX-S currents in both cell types had submillisecond rates of activation at room temperature with thresholds near −50 mV. The TTX-R current exhibited about the same rates of activation but required potentials 20–30 mV more depolarized to reach threshold. Over the same clamp voltages the rates of inactivation for the TTX-R current were three to nine times slower than those for the TTX-S current. However, the TTX-R current recovered from complete inactivation at a rate 10–20 times faster than the TTX-S current (10 ms as compared with 100–200 ms). Across the population of neurons studied the TTX-S data formed a relatively tight statistical distribution, exhibiting low standard deviations across all measured voltage- and time-dependent properties. In contrast, the same pooled measurements on the TTX-R data exhibited standard deviations that were 3–10 times larger. The statistical profiles of the voltage- and time-dependent properties of these currents then were used as a physiological guide to adjust the relevant parameters of a mathematical model of nodose sensory neurons previously developed by our group ( Schild et al. 1994 ). Here, we show how the relative expression of TTX-S and TTX-R Na+ currents and the differences in their apparent biological variability can shape the regenerative discharge characteristics and action potential waveshapes of sensory neurons. We propose that the spectrum of variability robust reactivation characteristics of the TTX-R current are important determinants in establishing the heterogeneous stimulus-response characteristics often observed across the general population of C-type sensory neurons.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3