Comparison of response properties of cells in the cat's visual cortex at high and low luminance levels

Author:

Ramoa A. S.,Freeman R. D.,Macy A.

Abstract

Receptive-field organization of cells in the cat's striate cortex and lateral geniculate nucleus (LGN) was investigated by using bars of light as stimuli. The aim was to determine if differences occur between conditions of high and low luminance levels. Of 72 cortical cells studied, the receptive fields of 63 were clearly different at high compared with low luminances. Units that gave on-off responses to flashed bars, for example, typically displayed on-only responses at low luminance. By far the most frequent change was that off responses were reduced or absent at low luminance levels. Of 63 cells that showed clear changes, 54 were of this type. This altered receptive-field organization appears to remain for extended periods (we have monitored the steady-state case for up to 2 h). Additional tests allow us to rule out the possible influence of overall changes in response strength and scattered light. To see if similar changes in receptive-field organization are present at the level of the LGN, we recorded from a small number of cells in the LGN (n = 10) and from an additional five afferent fibers in the cortex. In each case, there was a change in center-surround organization between high and low luminance levels similar to that previously reported for retinal ganglion cells. The excitatory responses from the surround for both on-center and off-center cells were absent at low luminance. Taken together, the results suggest that surround responses that can be elicited from ganglion cells and LGN cells make an important contribution to the receptive-field organization of cortical neurons. Changes in receptive-field organization of cortical cells are apparently not accompanied by alterations of other basic response properties. Orientation (7 cells) and spatial frequency (53 cells) selectivity remain relatively unchanged when measured at different luminances. Although optimal spatial frequency is slightly lower at low luminance levels, the low spatial frequency attenuation remains unaltered. Since receptive-field changes between high and low luminance levels suggest that a unit's classification may also vary, we examined simple and complex cell characteristics using sinusoidal gratings (65 cells). Contrary to what we had anticipated, the degree of modulation of responses was relatively independent of luminance, indicating that cell classification does not vary with stimulus luminance.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3