Electron microscopy of Golgi-impregnated photoreceptors reveals connections between red and green cones in the turtle retina

Author:

Kolb H.,Jones J.

Abstract

Red and green cones of two turtle species (Pseudemys scripta elegans and Chelydra serpentina) retina have been stained with Golgi procedures and examined by light microscopy of whole-mount tissue and by electron microscopy of serial thin sections. By light microscopy, red and green single cones appear indistinguishable, but double cones can be readily identified. All Golgi-stained photoreceptors in turtle retina have a spray of telodendria radiating from their synaptic pedicles. The telodendria of single cones are 10-20 micron long and end in clusters of terminals, whereas double cones have 30- to 50-micron long telodendria in addition to a very short bush of telodendria arising from one side of the pedicle. Electron microscopy of the Golgi-stained cones allows them to be distinguished into red or green spectral types by the appearance of their oil droplets. Furthermore, the spectral identity of cones contacted by the telodendria of identified Golgi-stained cones can similarly be determined. Red single cones make telodendrial contacts with other red singles, both members of the double cones, and with green single cones. Green single cones likewise connect to many surrounding red cones, both single and double types, and a few other green singles. Both members of the double cone connect to neighboring red and green singles and occasionally to double cones. The telodendria of stained cones end on spectrally homologous or heterologous cone types at basal junctions, central elements of ribbon synapses or, sometimes, as lateral elements of ribbon synapses. However, all these synaptic contacts appear to be of the same type, i.e., narrow-cleft basal junctions. Small gap junctions occur between neighboring cone pedicles, regardless of spectral type, in the visual streak area of the retina. Large gap junctions occur between unidentified cone telodendria in the neuropil of the outer plexiform layer. The telodendrial connections between red and green cones in the turtle retina have the appearance of chemical synapses and suggest an anatomical pathway responsible for the mixing of red and green signals in red or green cones of the turtle retina as reported in the accompanying physiological paper by Normann, Perlman, and Daly (27).

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3