Affiliation:
1. Departement de Physiologie et Neurophysiologie, Centre National de laRecherche Scientifique Unite de Recherche Associee 205, Faculte desSciences et Techniques Saint Jerome, Marseille, France.
Abstract
1. The patterns of membrane potential changes of phrenic motoneurons were compared during fictive vomiting, fictive coughing, and fictive swallowing in decerebrate, paralyzed cats. These fictive behaviors were identified by motor nerve discharge patterns similar to those recorded from the muscles of nonparalyzed animals. Phrenic motoneurons (n = 54) were identified by antidromic activation from the thoracic phrenic nerve. Intracellular recordings were obtained from 27 motoneurons during fictive vomiting, 40 during fictive coughing, and 27 during fictive swallowing. Sixteen motoneurons were recorded during both fictive coughing and fictive swallowing, eight during both fictive coughing and fictive vomiting, and two during both fictive vomiting and fictive swallowing. Seven motoneurons were studied during all three behaviors. 2. Fictive vomiting, typically evoked by electrical stimulation of abdominal vagal afferents, was characterized by a series of bursts of coactivation of phrenic and abdominal motor nerves, culminating in an expulsion phase in which abdominal discharge was prolonged both with respect to phrenic discharge and to abdominal discharge during the preceding retching phase. During fictive vomiting, phrenic motoneurons depolarized abruptly, and the amplitude of depolarization was significantly greater than during control inspirations. They then repolarized slowly throughout the phrenic burst, rapidly repolarizing at the end of each phrenic burst during retching and reaching a level similar to that observed during expiration. During the expulsion phase, the pattern was initially the same. However, after the cessation of phrenic discharge, the membrane potential repolarized slowly until the end of the abdominal burst, exhibiting greater synaptic noise than during expiration. One phrenic motoneuron, presumably innervating the periesophageal region of the diaphragm, received a strong hyperpolarization just before the onset of the emetic episode and fired for shorter periods during fictive vomiting than did other phrenic motoneurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献