Membrane potential changes of phrenic motoneurons during fictive vomiting, coughing, and swallowing in the decerebrate cat

Author:

Grelot L.1,Milano S.1,Portillo F.1,Miller A. D.1,Bianchi A. L.1

Affiliation:

1. Departement de Physiologie et Neurophysiologie, Centre National de laRecherche Scientifique Unite de Recherche Associee 205, Faculte desSciences et Techniques Saint Jerome, Marseille, France.

Abstract

1. The patterns of membrane potential changes of phrenic motoneurons were compared during fictive vomiting, fictive coughing, and fictive swallowing in decerebrate, paralyzed cats. These fictive behaviors were identified by motor nerve discharge patterns similar to those recorded from the muscles of nonparalyzed animals. Phrenic motoneurons (n = 54) were identified by antidromic activation from the thoracic phrenic nerve. Intracellular recordings were obtained from 27 motoneurons during fictive vomiting, 40 during fictive coughing, and 27 during fictive swallowing. Sixteen motoneurons were recorded during both fictive coughing and fictive swallowing, eight during both fictive coughing and fictive vomiting, and two during both fictive vomiting and fictive swallowing. Seven motoneurons were studied during all three behaviors. 2. Fictive vomiting, typically evoked by electrical stimulation of abdominal vagal afferents, was characterized by a series of bursts of coactivation of phrenic and abdominal motor nerves, culminating in an expulsion phase in which abdominal discharge was prolonged both with respect to phrenic discharge and to abdominal discharge during the preceding retching phase. During fictive vomiting, phrenic motoneurons depolarized abruptly, and the amplitude of depolarization was significantly greater than during control inspirations. They then repolarized slowly throughout the phrenic burst, rapidly repolarizing at the end of each phrenic burst during retching and reaching a level similar to that observed during expiration. During the expulsion phase, the pattern was initially the same. However, after the cessation of phrenic discharge, the membrane potential repolarized slowly until the end of the abdominal burst, exhibiting greater synaptic noise than during expiration. One phrenic motoneuron, presumably innervating the periesophageal region of the diaphragm, received a strong hyperpolarization just before the onset of the emetic episode and fired for shorter periods during fictive vomiting than did other phrenic motoneurons.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3