Responses of sagittally aligned Purkinje cells during perturbed locomotion: relation of climbing fiber activation to simple spike modulation

Author:

Lou J. S.1,Bloedel J. R.1

Affiliation:

1. Division of Neurobiology, St. Joseph's Hospital and Medical Center,Phoenix, Arizona 85013.

Abstract

1. The purpose of these experiments is to test the hypothesis that the synchronous activation of sagittally aligned Purkinje cells by a physiologically relevant stimulus is associated with an increase in the simple spike responses of the same neurons. 2. This hypothesis was tested using a perturbed locomotion paradigm in decerebrate locomoting ferrets. The responses of 3-5 sagittally aligned Purkinje cells were recorded simultaneously in response to the intermittent perturbation of the forelimb during swing phase. A data analysis is introduced, the real time postsynaptic response (RTPR), that permits the quantification of the simple spike responses of Purkinje cells in a manner that can be related to their complex spike responses on a trial-by-trial basis. 3. The data support the above hypothesis by illustrating that the amplitude of the combined simple spike responses across the population of Purkinje cells is correlated with the extent to which their climbing fiber inputs are synchronously activated. These findings together with an analysis of the gain-change ratio support the view that the synchronous climbing fiber input may be responsible for mediating this increased responsiveness. 4. More generally, the data suggest that the task- and/or behaviorally dependent activation of sagittal strips of climbing fiber inputs may provide a mechanism whereby the responsiveness of discrete populations of Purkinje cells can be selectively regulated, specifying the groups of neurons that will be most dramatically modulated by mossy fiber inputs activated by the same conditions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3