Charybdotoxin and apamin sensitivity of the calcium-dependent repolarization and the afterhyperpolarization in neostriatal neurons

Author:

Pineda J. C.1,Galarraga E.1,Bargas J.1,Cristancho M.1,Aceves J.1

Affiliation:

1. Departamento de Fisiologia, Biofisica y Neurociencias, CINVESTAV del I.P.N., Mexico City, D.F.

Abstract

1. Intracellular recordings from neostriatal neurons in an in vitro slice preparation of the rat brain were used to analyze the pharmacological sensitivity of the action potential (AP) repolarization and the afterhyperpolarization (AHP) that follows a single action potential. The interspike voltage trajectory and the AHP could be divided into two main parts: a fast component lasting a few milliseconds and better observed during a train of spikes, and a slow component lasting approximately 250 ms and that comprises the main portion of the AHP. In some cells, a slow (up to 1 s) component of low amplitude was also detected. 2. Single APs were elicited at two imposed membrane potentials (around -60 and around -80 mV). The AP amplitude was larger, the repolarization rate was faster, and the duration was shorter when spikes were evoked at -80 mV. When measured from the -60 mV holding potential, the afterpotential was an AHP with peak amplitude of -5 mV. The afterpotential became a delayed depolarization (DD) at -80 mV. 3. Firing frequency adaptation was voltage sensitive. The firing of APs induced by long intracellular current pulses from a holding potential of -80 mV exhibited only a slow-frequency adaptation (time constant of seconds). However, at -60 mV, an initial and faster frequency adaptation was evident (time constant of tens of milliseconds). 4. The Ca2+ channel blocker Cd2+ retarded AP repolarization rate. This effect correlated with a significant block of the fast and slow components of the AHP. In contrast, Ni2+ had no significant effects on the same parameters.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3