Mice lacking PKC-θ in skeletal muscle have reduced intramyocellular lipid accumulation and increased insulin responsiveness in skeletal muscle

Author:

Peck Bailey1,Huot Josh1,Renzi Tim1,Arthur Susan1,Turner Michael J.1,Marino Joseph S.1ORCID

Affiliation:

1. Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina Charlotte, Charlotte, North Carolina

Abstract

Protein kinase C-θ (PKC-θ) is a lipid-sensitive molecule associated with lipid-induced insulin resistance in skeletal muscle. Rodent models have not cohesively supported that PKC-θ impairs insulin responsiveness in skeletal muscle. The purpose of this study was to generate mice that lack PKC-θ in skeletal muscle and determine how lipid accumulation and insulin responsiveness are affected in that tissue. Mice lacking PKC-θ in skeletal muscle (SkMPKCθKO) and controls (SkMPKCθWT) were placed on a regular diet (RD) or high-fat diet (HFD) for 15 wk, followed by determination of food intake, fasting glucose levels, lipid accumulation, and insulin responsiveness. There were no differences between SkMPKCθWTand SkMPKCθKOmice on a RD. SkMPKCθKOmice on a HFD gained less weight from 10 through 15 wk of dietary intervention ( P < 0.05). This was likely due to less caloric consumption ( P = 0.0183) and fewer calories from fat ( P < 0.001) compared with SkMPKCθWTmice on a HFD. Intramyocellular lipid accumulation ( P < 0.0001), fatty acid binding protein 4, and TNF-α mRNA levels ( P < 0.05) were markedly reduced in SkMPKCθKOcompared with SkMPKCθWTmice on a HFD. As a result, fasting hyperglycemia was mitigated and insulin responsiveness, as indicated by Akt phosphorylation, was maintained in SkMPKCθKOon a HFD. Liver lipid accumulation was not affected by genotype, suggesting the deletion of PKC-θ from skeletal muscle has a tissue-specific effect. PKC-θ is a regulator of lipid-induced insulin resistance in skeletal muscle. However, the effects of this mutation may be tissue specific. Further work is warranted to comprehensively evaluated whole body metabolic responses in this model.

Funder

UNC Charlotte Faculty Research Grant

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3