Glycogenesis from lactate in rabbit skeletal muscle fiber types

Author:

Pagliassotti M. J.1,Donovan C. M.1

Affiliation:

1. Department of Exercise Science, University of Southern California, Los Angeles 90089.

Abstract

The path of glycogen synthesis from three-carbon precursors was studied via single-pass perfusions in three distinct rabbit skeletal muscle preparations, i.e., glycolytic (greater than 99% type IIb), oxidative (greater than 97% type I), and mixed (type I, IIa, and IIb). The extent of interaction between the Krebs cycle and glycogenesis was assessed utilizing [1-14C]- or [2-14C]lactate at basal (1.1 +/- 0.1 mM) and elevated (8.1 +/- 0.3 mM) lactate concentrations (protocols 1 and 2). Under conditions in which the net balance of glucose and lactate, [14C]lactate removal, and venous lactate-specific activity were similar, the yields of 14CO2 and [14C]glycogen were not significantly influenced by position of the label. Additional perfusions were performed with lactate (8.0 +/- 0.1 mM) and acetate (1.0 +/- 0.1 mM) as sole substrates and either [U-14C]lactate or [2-14C]acetate as the tracer. Under conditions of net glycogen synthesis, the incorporation of [14C]lactate into glycogen [in disintegrations/min (dpm).g-1.2 h-1] was 40,940 +/- 3,320, 1,540 +/- 320, and 32,600 +/- 4,100 in the glycolytic, oxidative, and mixed preparations, respectively. However, no incorporation of [2-14C]acetate into glycogen was observed in any preparation, despite a significant yield of 14CO2. Mercaptopicolinic acid, a potent inhibitor of phosphoenolpyruvate carboxykinase (PEPCK), demonstrated no significant effect on net substrate balance, tracer uptake, net glycogen synthesis, incorporation of [14C]lactate and [3H]-glucose into glycogen, or 14CO2 yield. Current results suggest an extramitochondrial route for net glycogen synthesis from three-carbon precursors, exclusive of PEPCK, that is consistent across all mammalian skeletal muscle fiber types.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3