Mechanisms of impaired calcium handling underlying subclinical diastolic dysfunction in diabetes

Author:

Lacombe Véronique A.,Viatchenko-Karpinski Serge,Terentyev Dmitry,Sridhar Arun,Emani Sitaramesh,Bonagura John D.,Feldman David S.,Györke Sandor,Carnes Cynthia A.

Abstract

Isolated diastolic dysfunction is found in almost half of asymptomatic patients with well-controlled diabetes and may precede diastolic heart failure. However, mechanisms that underlie diastolic dysfunction during diabetes are not well understood. We tested the hypothesis that isolated diastolic dysfunction is associated with impaired myocardial Ca2+ handling during type 1 diabetes. Streptozotocin-induced diabetic rats were compared with age-matched placebo-treated rats. Global left ventricular myocardial performance and systolic function were preserved in diabetic animals. Diabetes-induced diastolic dysfunction was evident on Doppler flow imaging, based on the altered patterns of mitral inflow and pulmonary venous flows. In isolated ventricular myocytes, diabetes resulted in significant prolongation of action potential duration compared with controls, with afterdepolarizations occurring in diabetic myocytes ( P < 0.05). Sustained outward K+ current and peak outward component of the inward rectifier were reduced in diabetic myocytes, while transient outward current was increased. There was no significant change in L-type Ca2+ current; however, Ca2+ transient amplitude was reduced and transient decay was prolonged by 38% in diabetic compared with control myocytes ( P < 0.05). Sarcoplasmic reticulum Ca2+ load (estimated by measuring the integral of caffeine-evoked Na+-Ca2+ exchanger current and Ca2+ transient amplitudes) was reduced by ∼50% in diabetic myocytes ( P < 0.05). In permeabilized myocytes, Ca2+ spark amplitude and frequency were reduced by 34 and 20%, respectively, in diabetic compared with control myocytes ( P < 0.05). Sarco(endo)plasmic reticulum Ca2+-ATPase-2a protein levels were decreased during diabetes. These data suggest that in vitro impairment of Ca2+ reuptake during myocyte relaxation contributes to in vivo diastolic dysfunction, with preserved global systolic function, during diabetes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3