Role of the nitric oxide pathway in hypoxia-induced hypothermia of rats

Author:

Branco L. G.1,Carnio E. C.1,Barros R. C.1

Affiliation:

1. Departamento de Fisiologia, Faculdade de Odontologia de RibeiraoPreto, Universidade de Sao Paulo, Brazil.

Abstract

Hypothermia is a response to hypoxia that occurs in organisms ranging from protozoans to mammals, but very little is known about the mechanisms involved. Recently, the NO pathway has been suggested to be involved in thermoregulation. In the present study, we assessed the participation of nitric oxide in hypoxia-induced hypothermia by means of NO synthase inhibition using NG-nitro-L-arginine methyl ester (L-NAME). The rectal temperature of awake, unrestrained rats was measured before and after hypoxia or L-NAME injection or both treatments together. Control animals received saline injections of the same volume. We observed a significant (P < 0.05) reduction in body temperature of 1.32 +/- 0.36 degrees C after hypoxia (7% inspired O2) and of 0.96 +/- 0.42 degree C after L-NAME (30 mg/kg body wt) injected intravenously. When the two treatments were combined, no significant difference in body temperature was observed. To assess the role of central thermo-regulatory mechanisms, a smaller dose of L-NAME (1 mg/kg) was injected into the third cerebral ventricle or intravenously. Intracerebroventricular injection of L-NAME caused an increase in body temperature, but when L-NAME was combined with hypoxia (7% inspired O2) no change in body temperature was observed. Intravenous injection of 1 mg/kg L-NAME had no effect. The data indicate that NO plays a major role in hypoxia-induced hypothermia at central rather than peripheral sites.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3