Interaction between myosin heavy chain and troponin isoforms modulate cardiac myofiber contractile dynamics

Author:

Chandra Murali,Tschirgi Matthew L.,Ford Steven J.,Slinker Bryan K.,Campbell Kenneth B.

Abstract

Coordinated expression of species-specific myosin heavy chain (MHC) and troponin (Tn) isoforms may bring about a dynamic complementarity to match muscle contraction speed with species-specific heart rates. Contractile system function and dynamic force-length measurements were made in muscle fibers from mouse and rat hearts and in muscle fibers after reconstitution with either recombinant homologous Tn or orthologous Tn. The rate constants of length-mediated cross-bridge (XB) recruitment ( b) and tension redevelopment ( ktr) of mouse fibers were significantly faster than those of rat fibers. Both the tension cost (ATPase/tension) and rate constant of length-mediated XB distortion ( c) were higher in the mouse than in the rat. Thus the mouse fiber was faster in all dynamic and functional aspects than the rat fiber. Mouse Tn significantly increased b and ktrin rat fibers; conversely, rat Tn significantly decreased b and ktrin mouse fibers. Thus the length-mediated recruitment of force-bearing XB occurs much more rapidly in the presence of mouse Tn than in the presence of rat Tn, demonstrating that the speed of XB recruitment is regulated by Tn. There was a significant interaction between Tn and MHC such that changes in either Tn or MHC affected the speed of XB recruitment. Our data demonstrate that the dynamics of myocardial contraction are different in the mouse and rat hearts because of sequence heterogeneity in MHC and Tn. At the myofilament level, coordinated expression of complementary regulatory contractile proteins produces a functional dynamic phenotype that allows the cardiovascular systems to function effectively at different heart rates.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3