Glucose supplements increase human muscle in vitro Na+-K+-ATPase activity during prolonged exercise

Author:

Green H. J.,Duhamel T. A.,Foley K. P.,Ouyang J.,Smith I. C.,Stewart R. D.

Abstract

Regulation of maximal Na+-K+-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (V̇o2peak) of 44.8 ± 1.9 ml·kg−1·min−1; mean ± SE cycled at ∼57% V̇o2peak to fatigue during both NG (artificial sweeteners) and G (6.13 ± 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased ( P < 0.05) in G compared with NG (137 ± 7 vs. 115 ± 6 min). Maximal Na+-K+-ATPase activity (Vmax) as measured by the 3- O-methylfluorescein phosphatase assay (nmol·mg−1·h−1) was not different between conditions prior to exercise (85.2 ± 3.3 or 86.0 ± 3.9), at 30 min (91.4 ± 4.7 vs. 91.9 ± 4.1) and at fatigue (92.8 ± 4.3 vs. 100 ± 5.0) but was higher ( P < 0.05) in G at 90 min (86.7 ± 4.2 vs. 109 ± 4.1). Na+-K+-ATPase content (βmax) measured by the vanadate facilitated [3H]ouabain-binding technique (pmol/g wet wt) although elevated ( P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher ( P < 0.05) in G compared with NG. The G condition also resulted in higher ( P < 0.05) serum insulin at similar time points to glucose and lower ( P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in Vmax by mechanisms that are unclear.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference60 articles.

1. Barr D, Green H, Fowles J. Factors affecting specific and non-specific activity in the measurement of Na+-K+-ATPase by 3-O-methylfluorescein phosphatase. Med Sci Sports Exerc 32, Suppl: S103, 2000.

2. Bergström J. Muscle electrolytes in man. Scand J Clin Lab Invest 68, Supp: 1–110, 1962.

3. Changes in muscle contractile properties and neural control during human muscular fatigue

4. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function

5. Insulin- and Glucose-Induced Phosphorylation of the Na+,K+-Adenosine Triphosphatase α-Subunits in Rat Skeletal Muscle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3