Author:
Green H. J.,Duhamel T. A.,Foley K. P.,Ouyang J.,Smith I. C.,Stewart R. D.
Abstract
Regulation of maximal Na+-K+-ATPase activity in vastus lateralis muscle was investigated in response to prolonged exercise with (G) and without (NG) oral glucose supplements. Fifteen untrained volunteers (14 males and 1 female) with a peak aerobic power (V̇o2peak) of 44.8 ± 1.9 ml·kg−1·min−1; mean ± SE cycled at ∼57% V̇o2peak to fatigue during both NG (artificial sweeteners) and G (6.13 ± 0.09% glucose) in randomized order. Consumption of beverage began at 30 min and continued every 15 min until fatigue. Time to fatigue was increased ( P < 0.05) in G compared with NG (137 ± 7 vs. 115 ± 6 min). Maximal Na+-K+-ATPase activity (Vmax) as measured by the 3- O-methylfluorescein phosphatase assay (nmol·mg−1·h−1) was not different between conditions prior to exercise (85.2 ± 3.3 or 86.0 ± 3.9), at 30 min (91.4 ± 4.7 vs. 91.9 ± 4.1) and at fatigue (92.8 ± 4.3 vs. 100 ± 5.0) but was higher ( P < 0.05) in G at 90 min (86.7 ± 4.2 vs. 109 ± 4.1). Na+-K+-ATPase content (βmax) measured by the vanadate facilitated [3H]ouabain-binding technique (pmol/g wet wt) although elevated ( P < 0.05) by exercise (0<30, 90, and fatigue) was not different between NG and G. At 60 and 90 min of exercise, blood glucose was higher ( P < 0.05) in G compared with NG. The G condition also resulted in higher ( P < 0.05) serum insulin at similar time points to glucose and lower ( P < 0.05) plasma epinephrine and norepinephrine at 90 min of exercise and at fatigue. These results suggest that G results in an increase in Vmax by mechanisms that are unclear.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Reference60 articles.
1. Barr D, Green H, Fowles J. Factors affecting specific and non-specific activity in the measurement of Na+-K+-ATPase by 3-O-methylfluorescein phosphatase. Med Sci Sports Exerc 32, Suppl: S103, 2000.
2. Bergström J. Muscle electrolytes in man. Scand J Clin Lab Invest 68, Supp: 1–110, 1962.
3. Changes in muscle contractile properties and neural control during human muscular fatigue
4. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function
5. Insulin- and Glucose-Induced Phosphorylation of the Na+,K+-Adenosine Triphosphatase α-Subunits in Rat Skeletal Muscle
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献