Angiotensin depolarizes parvocellular neurons in paraventricular nucleus through modulation of putative nonselective cationic and potassium conductances

Author:

Latchford Kevin J.,Ferguson Alastair V.

Abstract

Neurosecretory parvocellular neurons in the hypothalamic paraventricular nucleus (PVN) exercise considerable influence over the adenohypophysis and thus play a critical role in neuroendocrine regulation. ANG II has been demonstrated to act as a neurotransmitter in PVN, exerting significant impact on neuronal excitability and also influencing corticotrophin-releasing hormone secretion from the median eminence and, therefore, release of ACTH from the pituitary. We have used whole cell patch-clamp techniques in hypothalamic slices to examine the effects of ANG II on the excitability of neurosecretory parvocellular neurons. ANG II application resulted in a dose-dependent depolarization of neurosecretory neurons, a response that was maintained in tetrodotoxin (TTX), suggesting a direct mechanism of action. The depolarizing actions of this peptide were abolished by losartan, demonstrating these effects are AT1 receptor mediated. Voltage-clamp analysis using slow voltage ramps revealed that ANG II activates a voltage-independent conductance with a reversal potential of −37.8 ± 3.8 mV, suggesting ANG II effects on a nonselective cationic current. Further, a sustained potassium current characteristic of IK was significantly reduced (29.1 ± 4.7%) by ANG II. These studies identify multiple postsynaptic modulatory sites through which ANG II can influence the excitability of neurosecretory parvocellular PVN neurons and, as a consequence of such actions, control hormonal secretion from the anterior pituitary.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3