Cardiovascular and renal control in NOS-deficient mouse models

Author:

Ortiz Pablo A.1,Garvin Jeffrey L.1

Affiliation:

1. Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202

Abstract

Nitric oxide (NO) plays an essential role in the maintenance of cardiovascular and renal homeostasis. Endogenous NO is produced by three different NO synthase (NOS) isoforms: endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS). To investigate which NOS is responsible for NO production in different tissues, NOS knockout (−/−) mice have been generated for the three isoforms. This review focuses on the regulation of cardiovascular and renal function in relation to blood pressure homeostasis in the different NOS−/− mice. Although regulation of vascular tone and cardiac function in eNOS−/− has been extensively studied, far less is known about renal function in these mice. eNOS−/− mice are hypertensive, but the mechanism responsible for their high blood pressure is still not clear. Less is known about cardiovascular and renal control in nNOS−/− mice, probably because their blood pressure is normal. Recent data suggest that nNOS plays important roles in cardiac function, renal homeostasis, and regulation of vascular tone under certain conditions, but these are only now beginning to be studied. Inasmuch as iNOS is absent from the cardiovascular system under physiological conditions, it may become important to blood pressure regulation only during pathological conditions related to inflammatory processes. However, iNOS is constitutively expressed in the kidney, where its function is largely unknown. Overall, the study of NOS knockout mice has been very useful and produced many answers, but it has also raised new questions. The appearance of compensatory mechanisms suggests the importance of the different isoforms to specific processes, but it also complicates interpretation of the data. In addition, deletion of a single gene may have physiologically significant effects in addition to those being studied. Thus the presence or absence of a specific phenotype may not reflect the most important physiological function of the absent gene.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3