Role for pituitary adenylate cyclase activating polypeptide in cystitis-induced plasticity of micturition reflexes

Author:

Braas Karen M.,May Victor,Zvara Peter,Nausch Bernhard,Kliment Jan,Dunleavy J. Dana,Nelson Mark T.,Vizzard Margaret A.

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) peptides are expressed and regulated in sensory afferents of the micturition pathway. Although these studies have implicated PACAP in bladder control, the physiological significance of these observations has not been firmly established. To clarify these issues, the roles of PACAP and PACAP signaling in micturition and cystitis were examined in receptor characterization and physiological assays. PACAP receptors were identified in various tissues of the micturition pathway, including bladder detrusor smooth muscle and urothelium. Bladder smooth muscle expressed heterogeneously PAC1null, PAC1HOP1, and VPAC2 receptors; the urothelium was more restricted in expressing preferentially the PAC1 receptor subtype only. Immunocytochemical studies for PAC1 receptors were consistent with these tissue distributions. Furthermore, the addition of 50–100 nM PACAP27 or PACAP38 to isolated bladder strips elicited transient contractions and sustained increases in the amplitude of spontaneous phasic contractions. Treatment of the bladder strips with tetrodotoxin (1 μM) did not alter the spontaneous phasic contractions suggesting direct PACAP effects on bladder smooth muscle. PACAP also increased the amplitude of nerve-evoked contractions. By contrast, vasoactive intestinal polypeptide had no direct effects on bladder smooth muscle. In a rat cyclophosphamide (CYP)-induced cystitis paradigm, intrathecal or intravesical administration of PAC1 receptor antagonist, PACAP6–38, reduced cystitis-induced bladder overactivity. In summary, these studies support roles for PACAP in micturition and suggest that inflammation-induced plasticity in PACAP expression in peripheral and central micturition pathways contribute to bladder dysfunction with cystitis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3