Effects of lactate ions on the cardiorespiratory system in rainbow trout (Oncorhynchus mykiss)

Author:

Thomsen Mikkel T.1ORCID,Lefevre Sjannie2ORCID,Nilsson Göran E.2,Wang Tobias13,Bayley Mark1ORCID

Affiliation:

1. Department of Bioscience, Zoophysiology, Aarhus University, Aarhus, Denmark

2. Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway

3. Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark

Abstract

Lactate ions are involved in several physiological processes, including a direct stimulation of the carotid body, causing increased ventilation in mammals. A similar mechanism eliciting ventilatory stimulation in other vertebrate classes has been demonstrated, but it remains to be thoroughly investigated. Here, we investigated the effects of lactate ions on the cardiorespiratory system in swimming rainbow trout by manipulating the blood lactate concentration. Lactate elicited a vigorous, dose-dependent elevation of ventilation and bradycardia at physiologically relevant concentrations at constant pH. After this initial confirmation, we examined the chiral specificity of the response and found that only l-lactate induced these effects. By removal of the afferent inputs from the first gill arch, the response was greatly attenuated, and a comparison of the responses to injections up- and downstream of the gills collectively demonstrated that the lactate response was initiated by branchial cells. Injection of specific receptor antagonists revealed that a blockade of serotonergic receptors, which are involved in the hypoxic ventilatory response, significantly reduced the lactate response. Finally, we identified two putative lactate receptors based on sequence homology and found that both were expressed at substantially higher levels in the gills. We propose that lactate ions modulate ventilation by stimulating branchial oxygen-sensing cells, thus eliciting a cardiorespiratory response through receptors likely to have originated early in vertebrate evolution.

Funder

Augustinus Fonden (Augustinus Foundation)

Company of Biologists

Danida Fellowship Centre (DFC)

Det Frie Forskningsråd (Danish Council for Independent Research)

The Research Council of Norway

University of Oslo

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3