Author:
Burggren Warren,Khorrami Sheva,Pinder Alan,Sun Tiffany
Abstract
Normal aerobic metabolic rates persist in the early chicken embryo after elimination of cardiac output, but the dependence of tissue growth and differentiation on blood flow is unknown in these early stages. We partially ligated (25–50% occlusion) the ventricular outflow tract of Hamburger-Hamilton stage (HH) 16–18 embryos, producing a wide range of cardiac output. For the next ∼48 h (to HH 24), we measured heart rate (HR), stroke volume (SV), and cardiac output (CO), as well as these growth indicators: eye diameter, chorioallantoic vessel density, and body mass. Acutely, HR declined with partial ligation (from 108 to 98 beats/min). Paradoxically, SV and CO decreased sharply in most embryos but increased in others, collectively producing the desired large variation (up to 25-fold) in CO and permitting assessment of tissue growth over a very large range of blood perfusion. Eye diameter doubled (from 0.6 to 1.2 mm) with development from HH 16 to HH 24, but within a developmental cohort there was no significant correlation between eye diameter and CO over a 25-fold range of CO. Similarly, chorioallantoic membrane vessel index was independent of CO over the CO range at all stages. Finally, body mass increase during development was not significantly affected by partial conal truncal ligation. Collectively, these data suggest that normal eye and vessel growth and body mass accumulation occur independent of their rate of blood perfusion, supporting the hypothesis of prosynchronotropy—that the heart begins to beat and generate blood flow in advance of the actual need for convective blood flow to tissues.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献