Skeletal muscle as the major site of nonshivering thermogenesis in cold-acclimated ducklings

Author:

Duchamp C.1,Barre H.1

Affiliation:

1. Laboratoire de Thermoregulation et Energetique de l'Exercice, Centre National de la Recherche Scientifique, Faculte de Medecine, Lyon, France.

Abstract

Despite their lack of brown adipose tissue, 6-wk-old cold-acclimated muscovy ducklings (4 degrees C; CA) exhibit nonshivering thermogenesis (NST) in the cold. To determine the site of this NST, the regional distribution of blood flow was measured by the microsphere method in the thermoneutral zone (25 degrees C) and during acute exposure to cold (8 degrees C). Ducklings reared at thermal neutrality (TN), which use shivering to produce extra heat in the cold, were compared with CA ducklings, which substitute NST for shivering. Further, the contribution of skeletal muscle thermogenesis to the increased heat production in the cold was estimated by measuring leg muscle blood flow and arteriovenous difference in oxygen content [(a-v)O2] across the leg, enabling an estimation of muscle O2 consumption. During cold exposure, a similar increase in total leg muscle blood flow occurred in TN and CA ducklings (+127 and +130% respectively), while hepatic arterial blood flow increased less (+56 to +37%, respectively). This rise in blood flow was accounted for by an increase in cardiac output, which was smaller in CA than in TN ducklings, and in both groups by a redistribution of blood flow to the most thermogenic organs (skeletal muscles and liver). The (a-v)O2 across the leg was not changed by cold exposure, indicating that the increase in leg muscle O2 consumption resulted mainly from the increase in blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3