Temperature dependency of force loss and Ca2+homeostasis in mouse EDL muscle after eccentric contractions

Author:

Warren Gordon L.12,Ingalls Christopher P.2,Armstrong R. B.2

Affiliation:

1. Department of Physical Therapy, Georgia State University, Atlanta, Georgia 30303; and

2. Department of Health & Kinesiology, Texas A&M University, College Station, Texas 77843

Abstract

The goals of this study were first to determine the effect of temperature on the force loss that results from eccentric contractions in mouse extensor digitorum longus (EDL) muscles and then to evaluate a potential role for altered Ca2+ homeostasis explaining the greater isometric force loss observed at the higher temperatures. Isolated muscles performed five eccentric or five isometric contractions at either 15, 20, 25, 30, 33.5, or 37°C. Isometric force loss, caffeine-induced force, lactate dehydrogenase (LDH) release, muscle accumulation of 45Ca2+ from the bathing medium, sarcoplasmic reticulum (SR) Ca2+ uptake, and resting muscle fiber free cytosolic Ca2+ concentration ([Ca2+]i) were measured. The isometric force loss after eccentric contractions increased progressively as temperature rose; at 15°C, there was no significant loss of force, but at 37°C, there was a 30–39% loss of force. After eccentric contractions, caffeine-induced force was not affected by temperature nor was it different from that of control muscles at any temperature. Loss of cell membrane integrity and subsequent influx of extracellular Ca2+ as indicated by LDH release and muscle45Ca2+ accumulation, respectively, were minimal over the 15–25°C range, but both increased as an exponential function of temperature between 30 and 37°C. SR Ca2+uptake showed no impairment as temperature increased, and the eccentric contraction-induced rise in resting fiber [Ca2+]i was unaffected by temperature over the 15–25°C range. In conclusion, the isometric force loss after eccentric contractions is temperature dependent, but the temperature dependency does not appear to be readily explainable by alterations in Ca2+ homeostasis.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3