Platelet inhibition by low-dose aspirin but not by clopidogrel reduces the axon-reflex current-induced vasodilation in humans

Author:

Rousseau P.,Tartas M.,Fromy B.,Godon A.,Custaud M.-A.,Saumet J. L.,Abraham P.

Abstract

We previously showed a prolonged inhibition of current-induced vasodilation (CIV) after a single oral high dose of aspirin. In this study, we tested the hypothesis of platelet involvement in CIV. Nine healthy volunteers took 75 mg aspirin/day, 98 mg of clopidogrel bisulfate/day, or placebo for 4 days. CIV was induced by two consecutive 1-min anodal current applications (0.08 mA/cm2) through deionized water with a 10-min interval. CIV was measured with laser Doppler flowmetry and expressed as a percentage of baseline cutaneous vascular conductance: %Cb. In a second experiment in 10 volunteers, aspirin and placebo were given as in experiment 1, but a 26-h delay from the last aspirin intake elapsed before ACh iontophoresis and postocclusive hyperemia were studied in parallel to CIV. In experiment 1, the means ± SE amplitude of CIV was 822 ± 314, 313 ± 144, and 746 ± 397%Cb with placebo, aspirin ( P < 0.05 from placebo and clopidogrel), and clopidogrel (NS from placebo), respectively. In experiment 2, CIV impairment with aspirin was confirmed: CIV amplitudes were 300 ± 99, and 916 ± 528%Cb under aspirin and placebo, respectively ( P < 0.05), whereas vasodilation to ACh iontophoresis (322 ± 74 and 365 ± 104%Cb) and peak postocclusive hyperemia (491 ± 137 and 661 ± 248%Cb) were not different between aspirin and placebo, respectively. Low-dose aspirin, even 26 h after oral administration, impairs CIV, while ACh-mediated vasodilation and postocclusive hyperemia are preserved. If platelets are involved in the neurovascular mechanism triggered by galvanic current application in humans, it is likely to occur through the cyclooxygenase but not the ADP pathway.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3