Modulation of cold-induced shivering activity by intermittent and continuous voluntary suppression

Author:

Arnold Josh T.12ORCID,Lennon Jack F.1,Lloyd Alex B.1ORCID

Affiliation:

1. Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom

2. Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, United Kingdom

Abstract

This investigation assessed the physiological effects of voluntary suppression of shivering thermogenesis in response to whole body cooling. Eleven healthy volunteers underwent passive air cooling (10°C), across three visits: NO_SUP, where participants allowed their body to freely regulate against the cold; FULL_SUP, where participants constantly suppressed shivering; INT_SUP, where participants intermittently suppressed shivering (5 min phases), interspersed with 5 min free regulation. Shivering was assessed via electromyography (EMG), mechanomyography (MMG), and whole body oxygen uptake (V̇o2), whereas body temperature and heat exchange were assessed via skin temperature, rectal temperature, and heat flux sensors. A 29% increase was observed in shivering onset time in the FULL_SUP trial compared with NO_SUP ( P = 0.032). Assessing shivering intensity, EMG activity decreased by 29% ( P = 0.034), MMG activity decreased by 35% ( P = 0.031), whereas no difference was observed in V̇o2 ( P = 0.091) in the FULL_SUP trial compared with NO_SUP. Partitioning the no-suppression and suppression phases of the INT_SUP trial, acute voluntary suppression significantly decreased V̇o2 ( P = 0.001), EMG ( P < 0.001), and MMG ( P = 0.012) activity compared with the no-suppression phases. Shivering activity was restored in the no-suppression phases, equivalent to that in the NO_SUP trial ( P > 0.3). No difference was observed in thermal metrics between conditions up to 60 min ( P > 0.4). Humans can both constantly and periodically suppress shivering activity, leading to a delay in shivering onset and a reduction in shivering intensity. Following suppression, regular shivering is resumed.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3