Breathing while altricial: the ontogeny of ventilatory chemosensitivity in red-winged blackbird (Agelaius phoeniceus) nestlings

Author:

Dzialowski Edward M.1,Sirsat Tushar S.1,Sirsat Sarah K. G.1,Price Edwin R.1

Affiliation:

1. Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, Texas

Abstract

Altricial bird species, like red-winged blackbirds, hatch at an immature state of functional maturity with limited aerobic capacity and no endothermic capacity. Over the next 10–12 days in the nest, red-winged blackbirds develop increased metabolic capacity before fledging. Although ontogeny of respiration has been described in precocial birds, ontogeny of ventilatory chemosensitivity is unknown in altricial species. Here we examined developmental changes in chemosensitivity of tidal volume (Vt), breathing frequency (ƒ), minute ventilation (V̇e), and whole animal oxygen consumption (V̇o2) from hatching to just before fledging in red-winged blackbirds on days 1, 3, 5, 7, and 9 posthatching (dph) in response to hypercapnia (2 and 4% CO2) and hypoxia (15 and 10% O2). Under control conditions, there was a developmental increase in V̇e with age due to increased Vt. Hypercapnic and hypoxic chemosensitivities were present as early as 1 dph. In response to hypoxia, 1, 3, and 9 dph nestlings increased V̇e at 10% O2, by increasing ƒ with some change in Vt in younger animals. In contrast to early neonatal altricial mammals, the hypoxic response of nestling red-winged blackbirds was not biphasic. In response to hypercapnia, 3 dph nestlings increased V̇e by increasing both ƒ and Vt. From 5 dph on, the hypercapnic increase in V̇e was accounted for by increased Vt and not ƒ. Chemosensitivity to O2 and CO2 matures early in nestling red-winged blackbirds, well before the ability to increase V̇o2 in response to cooling, and thus does not represent a limitation to the development of endothermy.

Funder

National Science Foundation (NSF)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3