Development of ovine chorionic somatomammotropin hormone-deficient pregnancies

Author:

Baker Callie M.1,Goetzmann Lindsey N.1,Cantlon Jeremy D.1,Jeckel Kimberly M.1,Winger Quinton A.1,Anthony Russell V.1

Affiliation:

1. Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado

Abstract

Intrauterine growth restriction (IUGR) is a leading cause of neonatal mortality and morbidity. Chorionic somatomammotropin hormone (CSH), a placenta-specific secretory product found at high concentrations in maternal and fetal circulation throughout gestation, is significantly reduced in human and sheep IUGR pregnancies. The objective of this study was to knock down ovine CSH ( oCSH) expression in vivo using lentiviral-mediated short-hairpin RNA to test the hypothesis that oCSH deficiency would result in IUGR of near-term fetal lambs. Three different lentiviral oCSH-targeting constructs were used and compared with pregnancies ( n = 8) generated with a scrambled control (SC) lentiviral construct. Pregnancies were harvested at 135 days of gestation. The most effective targeting sequence, “target 6” (tg6; n = 8), yielded pregnancies with significant reductions ( P ≤ 0.05) in oCSH mRNA (50%) and protein (38%) concentrations, as well as significant reductions ( P ≤ 0.05) in placental (52%) and fetal (32%) weights compared with the SC pregnancies. Fetal liver weights were reduced 41% ( P ≤ 0.05), yet fetal liver insulin-like growth factor-I ( oIGF1) and -II mRNA concentrations were reduced ( P ≤ 0.05) 82 and 71%, respectively, and umbilical artery oIGF1 concentrations were reduced 62% ( P ≤ 0.05) in tg6 pregnancies. Additionally, fetal liver oIGF-binding protein ( oIGFBP) 2 and oIGFBP3 mRNA concentrations were reduced ( P ≤ 0.05), whereas fetal liver oIGFBP1 mRNA concentration was not impacted nor was maternal liver o IGF and o IGFBP mRNA concentrations or uterine artery oIGF1 concentrations ( P ≥ 0.10). Based on our results, it appears that oCSH deficiency does result in IUGR, by impacting placental development as well as fetal liver development and function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3