Author:
Giordano Antonio,Song C. Kay,Bowers Robert R.,Ehlen J. Christopher,Frontini Andrea,Cinti Saverio,Bartness Timothy J.
Abstract
Converging evidence indicates that white adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) based on immunohistochemical labeling of a SNS marker (tyrosine hydroxylase [TH]), tract tracing of WAT sympathetic postganglionic innervation, pseudorabies virus (PRV) transneuronal labeling of WAT SNS outflow neurons, and functional evidence from denervation studies. Recently, WAT para-SNS (PSNS) innervation was suggested because local surgical WAT sympathectomy (sparing hypothesized parasympathetic innervation) followed by PRV injection yielded infected cells in the vagal dorsomotor nucleus (DMV), a traditionally-recognized PSNS brain stem site. In addition, local surgical PSNS WAT denervation triggered WAT catabolic responses. We tested histologically whether WAT was parasympathetically innervated by searching for PSNS markers in rat, and normal (C57BL) and obese ( ob/ob) mouse WAT. Vesicular acetylcholine transporter, vasoactive intestinal peptide and neuronal nitric oxide synthase immunoreactivities were absent in WAT pads (retroperitoneal, epididymal, inguinal subcutaneous) from all animals. Nearly all nerves innervating WAT vasculature and parenchyma that were labeled with protein gene product 9.5 (PGP9.5; pan-nerve marker) also contained TH, attesting to pervasive SNS innervation. When Siberian hamster inguinal WAT was sympathetically denervated via local injections of catecholaminergic toxin 6-hydroxydopamine (sparing putative parasympathetic nerves), subsequent PRV injection resulted in no central nervous system (CNS) or sympathetic chain infections suggesting no PSNS innervation. By contrast, vehicle-injected WAT subsequently inoculated with PRV had typical CNS/sympathetic chain viral infection patterns. Collectively, these data indicate no parasympathetic nerve markers in WAT of several species, with sparse DMV innervation and question the claim of PSNS WAT innervation as well as its functional significance.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献