Consequences of being phenotypically mismatched with the environment: rapid muscle ultrastructural changes in cold-shocked black-capped chickadees (Poecile atricapillus)

Author:

Vézina François1,Cornelius Ruhs Emily1,O’Connor Erin S.2,Le Pogam Audrey1,Régimbald Lyette1,Love Oliver P.3,Jimenez Ana Gabriela2

Affiliation:

1. Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d’études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada

2. Department of Biology, Colgate University, Hamilton, New York

3. Department of Integrative Biology, University of Windsor, Ontario, Canada

Abstract

Phenotypic flexibility has received considerable attention in the last decade; however, whereas many studies have reported amplitude of variation in phenotypic traits, much less attention has focused on the rate at which traits can adjust in response to sudden changes in the environment. We investigated whole animal and muscle phenotypic changes occurring in black-capped chickadees ( Poecile atricapillus) acclimated to cold (−5°C) and warm (20°C) temperatures in the first 3 h following a 15°C temperature drop (over 3 h). Before the temperature change, cold-acclimated birds were consuming 95% more food, were carrying twice as much body fat, and had 23% larger pectoralis muscle fiber diameters than individuals kept at 20°C. In the 3 h following the temperature drop, these same birds altered their pectoralis muscle ultrastructure by increasing the number of capillaries per fiber area and the number of nuclei per millimeter of fiber by 22%, consequently leading to a 22% decrease in myonuclear domain (amount of cytoplasm serviced per nucleus), whereas no such changes were observed in the warm-acclimated birds. To our knowledge, this is the first demonstration of such a rapid adjustment in muscle fiber ultrastructure in vertebrates. These results support the hypothesis that chickadees maintaining a cold phenotype are better prepared than warm-phenotype individuals to respond to a sudden decline in temperature, such as what may be experienced in their natural wintering environment.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Canada Research Chairs

Fonds de Recherche du Québec Nature et Technologies

Colgate University

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3