Nesfatin-1 influences the excitability of neurons in the nucleus of the solitary tract and regulates cardiovascular function

Author:

Mimee Andrea1,Smith Pauline M.1,Ferguson Alastair V.1

Affiliation:

1. Department of Physiology, Queen's University, Kingston, Ontario, Canada

Abstract

Nesfatin-1 has been identified as one of the most potent centrally acting anorexigenic peptides, and it has also been shown to play important roles in the control of cardiovascular function. In situ hybridization and immunohistochemical studies have revealed the expression of nesfatin-1 throughout the brain and, in particular, in the medullary autonomic gateway known as the nucleus of the solitary tract (NTS). The present study was thus undertaken to explore the cellular correlates and functional roles of nesfatin-1 actions in the medial NTS (mNTS). Using current-clamp electrophysiology recordings from mNTS neurons in slice preparation, we show that bath-applied nesfatin-1 directly influences the excitability of the majority of mNTS neurons by eliciting either depolarizing (42%, mean: 7.8 ± 0.8 mV) or hyperpolarizing (21%, mean: −8. 2 ± 1.0 mV) responses. These responses were observed in all electrophysiologically defined cell types in the NTS and were site specific and concentration dependent. Furthermore, post hoc single cell reverse transcriptase polymerase reaction revealed a depolarizing action of nesfatin-1 on NPY and nucleobindin-2-expressing mNTS neurons. We have also correlated these actions of nesfatin-1 on neuronal membrane potential with physiological outcomes, using in vivo microinjection techniques to demonstrate that nesfatin-1 microinjected into the mNTS induces significant increases in both blood pressure (mean AUC = 3354.1 ± 750.7 mmHg·s, n = 6) and heart rate (mean AUC = 164.8 ± 78.5 beats, n = 6) in rats. Our results provide critical insight into the circuitry and physiology involved in the profound effects of nesfatin-1 and highlight the NTS as a key structure mediating these autonomic actions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3