Hypoxia inhibits cardiomyocyte proliferation in fetal rat hearts via upregulating TIMP-4

Author:

Tong Wenni1,Xiong Fuxia1,Li Yong1,Zhang Lubo1

Affiliation:

1. Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California

Abstract

Maternal hypoxia inhibits cardiomyocyte proliferation in the heart of fetal and neonatal rats. The present study tested the hypothesis that hypoxia has a direct effect inhibiting cardiomyocyte proliferation via upregulating tissue inhibitors of metalloproteinases (TIMP) in fetal rat hearts. Isolated fetal rat hearts and rat embryonic ventricular myocyte H9c2 cells were treated ex vivo with 20% or 1% O2 for 48 or 24 h, respectively. Hypoxia caused a significant reduction in cardiomyocyte Ki-67 expression and bromodeoxyuridine incorporation in fetal hearts and H9c2 cells. In both fetal hearts and H9c2 cells, hypoxia resulted in a significant decrease in a cell division marker cyclin D2 but an increase in a cell division inhibitor p27. Additionally, hypoxia caused an upregulation of TIMP-3 and TIMP-4 in fetal hearts and H9c2 cells. Knockdown of TIMP-3 in H9c2 cells significantly increased cyclin D2 and Ki-67 and partially blocked the hypoxia-induced inhibition of cyclin D2 and Ki-67 in H9c2 cells. Unlike TIMP-3, TIMP-4 knockdown had no significant effects on the basal levels of cell proliferation but completely abrogated the hypoxia-mediated effects. These findings provide evidence of a novel causal role of TIMP-4 and TIMP-3 in the direct inhibitory effect of hypoxia on cardiomyocyte proliferation in the developing heart.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3