Effect of physiological levels of caffeine on Ca2+ handling and fatigue development in Xenopus isolated single myofibers

Author:

Rosser Joelle I.,Walsh Brandon,Hogan Michael C.

Abstract

The purpose of the present study was to determine whether exposure to exogenous physiological concentrations of caffeine influence contractility, Ca2+ handling, and fatigue development in isolated single Xenopus laevis skeletal muscle fibers. After isolation, two identical contractile periods (separated by 60-min rest) were conducted in each single myofiber ( n = 8) at 20°C. During the first contractile period, four fibers were perfused with a noncaffeinated Ringer solution, while the other four fibers were perfused with a caffeinated (70 μM) Ringer solution. The order was reversed for the second contractile period. The single myofibers were stimulated during each contractile period at increasing frequencies (0.16, 0.20, 0.25, 0.33, 0.50, and 1.0 tetanic contractions/s), with each stimulation frequency lasting 2 min until fatigue ensued, defined in this study as a fall in tension development to 66% of maximum. Tension development and free cytosolic [Ca2+] (fura-2 fluorescence spectroscopy) were simultaneously measured. There was no significant difference in the peak force generation, time to fatigue, cytosolic Ca2+ levels, or relaxation times between the noncaffeinated and caffeinated trials. These results demonstrate that physiological levels of caffeine have no significant effect on Xenopus single myofiber contractility, Ca2+ handling, and fatigue development, and suggest that any ergogenic effects of physiological levels of caffeine on muscle performance during contractions of moderate to high intensity are likely related to factors extraneous to the muscle fiber.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3