Regulation of skeletal muscle glycogen phosphorylase and PDH at varying exercise power outputs

Author:

Howlett Richard A.1,Parolin Michelle L.1,Dyck David J.1,Hultman Eric1,Jones Norman L.1,Heigenhauser George J. F.1,Spriet Lawrence L.1

Affiliation:

1. Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1; Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5; and Department of Clinical Chemistry, Huddinge University Hospital, Karolinska Institute, S-141 86 Huddinge, Sweden

Abstract

This study investigated the transformational and posttransformational control of skeletal muscle glycogen phosphorylase and pyruvate dehydrogenase (PDH) at three exercise power outputs [35, 65, and 90% of maximal oxygen uptake (V˙o 2 max)]. Seven untrained subjects cycled at one power output for 10 min on three separate occasions, with muscle biopsies at rest and 1 and 10 min of exercise. Glycogen phosphorylase in the more active ( a) form was not significantly different at any time across power outputs (21.4–29.6%), with the exception of 90%, where it fell significantly to 15.3% at 10 min. PDH transformation increased significantly from rest (average 0.53 mmol ⋅ kg wet muscle−1 ⋅ min−1) to 1 min of exercise as a function of power output (1.60 ± 0.26, 2.77 ± 0.29, and 3.33 ± 0.31 mmol ⋅ kg wet muscle−1 ⋅ min−1at 35, 65, and 90%, respectively) with a further significant increase at 10 min (4.45 ± 0.35) at 90%V˙o 2 max. Muscle lactate, acetyl-CoA, acetylcarnitine, and free ADP, AMP, and Pi were unchanged from rest at 35% V˙o 2 max but rose significantly at 65 and 90%, with accumulations at 90% being significantly higher than 65%. The results of this study indicate that glycogen phosphorylase transformation is independent of increasing power outputs, despite increasing glycogenolytic flux, suggesting that flux through glycogen phosphorylase is matched to the demand for energy by posttransformational factors, such as free Pi and AMP. Conversely, PDH transformation is directly related to the increasing power output and the calculated flux through the enzyme. The rise in PDH transformation is likely due to increased Ca2+concentration and/or increased pyruvate. These results demonstrate that metabolic signals related to contraction and the energy state of the cell are sensitive to the exercise intensity and coordinate the increase in carbohydrate use with increasing power output.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3