Differential regulation of GLUT1 and GLUT8 expression by hypoxia in mammary epithelial cells

Author:

Shao Yong1,Wellman Theresa L.2,Lounsbury Karen M.2,Zhao Feng-Qi1

Affiliation:

1. Laboratory of Lactation and Metabolic Physiology, Department of Animal Science; and

2. Department of Pharmacology, University of Vermont, Burlington, Vermont

Abstract

Glucose is a major substrate for milk synthesis and is taken up from the blood by mammary epithelial cells (MECs) through facilitative glucose transporters (GLUTs). The expression levels of GLUT1 and GLUT8 are upregulated dramatically in the mammary gland from late pregnancy through early lactation stages. This study aimed to test the hypothesis that this increase in GLUT1 and GLUT8 expression involves hypoxia signaling through hypoxia inducible factor-1α (HIF-1α) in MECs. Mouse mammary glands showed significantly more hypoxia in midpregnancy through early lactation stages compared with in the virgin stage, as stained by the hypoxia marker pimonidazole HCl. Treatment with hypoxia (2% O2) significantly stimulated glucose uptake and GLUT1 mRNA and protein expression, but decreased GLUT8 mRNA expression in bovine MECs. In MECs, hypoxia also increased the levels of HIF-1α protein in the nuclei, and siRNA against HIF-1α completely abolished the hypoxia-induced upregulation of GLUT1, while having no effect on GLUT8 expression. A 5′-RCGTG-3′ core HIF-1α binding sequence was identified 3.7 kb upstream of the bovine GLUT1 gene, and HIF-1α binding to this site was increased during hypoxia. In conclusion, the mammary glands in pregnant and lactating animals are hypoxic, and MECs respond to this hypoxia by increasing GLUT1 expression and glucose uptake through a HIF-1α-dependent mechanism. GLUT8 expression, however, is negatively regulated by hypoxia through a HIF-1α-independent pathway. The regulation of glucose transporters through hypoxia-mediated gene transcription in the mammary gland may provide an important physiological mechanism for MECs to meet the metabolic demands of mammary development and lactation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3