Potentiation of carbachol-induced amylase release by propionate in guinea pig and vole pancreatic acini

Author:

Harada Etsumori1,Mitani Megumi1,Takeuchi Takashi1

Affiliation:

1. Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Tottori 680-0945, Japan

Abstract

The action of propionate, one of the major end products of microbial fermentation in herbivores was investigated in isolated, perifused pancreatic acini of guinea pigs, voles, and mice. With the use of guinea pig acini, 100 μM propionate had no effect, whereas 300 and 600 μM increased amylase release by six- and ninefold, respectively. Simultaneous perifusion of carbachol (CCh) 10 μM plus propionate 100 μM in guinea pig acini produced a potentiated secretory response that was 130% higher than the summated value obtained with CCh and propionate alone. The potentiation by propionate (100 μM) of CCh (10 μM)-induced amylase release was also obtained in vole pancreatic acini, but the mouse pancreatic preparation did not exhibit a similar potentiation. In contrast to CCh, propionate (100–600 μM) alone had no significant effect on intracellular Ca2+ concentration ([Ca2+]i) and did not alter [Ca2+]ielicited by CCh. Ca ionophore A23187 (5 μM)-induced amylase release in guinea pig acini was enhanced twofold by the addition of propionate. Cellular cAMP content was increased slightly by propionate, but did not alter dose dependently. The cAMP level with combinations of CCh and propionate was almost same as that with CCh alone and propionate alone. Staurosporine did not modify amylase secretion induced by a combination of CCh and propionate. These results suggest that propionate, in addition to a direct action on amylase release, potentiates CCh-induced amylase release in guinea pig and vole acini via a secretory pathway not associated with an increase in [Ca2+]iand cellular cAMP.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3