Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors

Author:

Fan Wei1,Schild John H.1,Andresen Michael C.1

Affiliation:

1. Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, Oregon 97201-3098

Abstract

Unmyelinated (C) and myelinated (A) baroreceptor (BR) axons are present in rat aortic depressor nerve (ADN). With graded ADN electrical activation and anodal conduction blockade, reflex responses in anesthetized rats were assessed as changes in mean arterial pressure (MAP) and heart rate (HR). We tested the hypothesis that C-type BR inputs are effective at low frequencies because they outnumber A-type. Anodal current ( I an) reversibly eliminated all MAP and HR responses to A-selective stimuli. High intensities activated all ADN axons (A+C) and decreased MAP at lower frequencies (<10 Hz) than were effective with A-selective stimulation. I anreduced only MAP responses to >10-Hz ADN stimulation. Burst patterns significantly augmented A- but not C-selective reflex responses despite identical numbers of shocks per second. A-selective stimuli failed to evoke significant bradycardia even at 200 Hz. Maximum intensity stimuli plus I an (C selective) evoked less bradycardia than without I an (A+C), indicating supra-additive summation unlike the occlusive summation for MAP responses. However, activation of reduced numbers of C-type BRs with all A-type BRs suggests a strong A to C interaction in reflex bradycardia responses. Surprisingly, I an block of A-type conduction eliminated all reflex bradycardia at such submaximal intensities despite C conduction and depressor responses. A- and C-type BRs act synergistically, and A-type activity is absolutely required in cardiac but not in depressor pathways. Thus greater numbers do not appear to account for C-type BR efficacy, and critical interactions between these two sensory subtypes appear to occur differentially across cardiac and systemic baroreflex effector pathways.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3