Affiliation:
1. Department of Physiology, Southern Illinois University School of Medicine, Carbondale 62901.
Abstract
A new technique has been developed to correlate K loss from cells (JK) across the basolateral membrane into a K-free ouabain Ringer solution and short-circuit current (Isc) for a model Na-transporting epithelium, the frog skin. Distinct differences were observed when the tissue was bathed in sulfate or chloride Ringer. In sulfate Ringer, K-free ouabain treatment caused both JK and Isc to decline in a nearly parallel fashion with time. JK-Isc was approximately 1 microA/cm2. In sulfate Ringer, isoproterenol caused parallel increases, whereas amiloride (apical side) caused parallel decreases in JK and Isc. In chloride Ringer, K-free ouabain treatment caused Isc to decline at a slightly faster rate than JK.JK-Isc was approximately 8 microA/cm2. Bumetanide decreased JK with very little effect on Isc. Barium caused small parallel changes in both Isc and JK. Amiloride decreased Isc with very little effect on JK. These experiments show that after ouabain treatment changes in JK from the cells across the basolateral membrane can largely account for changes in Isc. However, JK also occurs via neutral mechanisms and perhaps from cells not related to the transport pathway, demonstrating that there is not always a tight coupling of K loss at the basolateral membrane with Na entry across the apical membrane.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology