Association of overactive bladder and stress urinary incontinence in rats with pudendal nerve ligation injury

Author:

Furuta Akira,Kita Masafumi,Suzuki Yasuyuki,Egawa Shin,Chancellor Michael B.,de Groat William C.,Yoshimura Naoki

Abstract

Approximately one-third of patients with stress urinary incontinence (SUI) also suffer from urgency incontinence, which is one of the major symptoms of overactive bladder (OAB) syndrome. Pudendal nerve injury has been recognized as a possible cause for both SUI and OAB. Therefore, we investigated the effects of pudendal nerve ligation (PNL) on bladder function and urinary continence in female Sprague-Dawley rats. Conscious cystometry with or without capsaicin pretreatment (125 mg/kg sc), leak point pressures (LPPs), contractile responses of bladder muscle strips to carbachol or phenylephrine, and levels of nerve growth factor (NGF) protein and mRNA in the bladder were compared in sham and PNL rats 4 wk after the injury. Urinary frequency detected by a reduction in intercontraction intervals and voided volume was observed in PNL rats compared with sham rats, but it was not seen in PNL rats with capsaicin pretreatment that desensitizes C-fiber-afferent pathways. LPPs in PNL rats were significantly decreased compared with sham rats. The contractile responses of detrusor muscle strips to phenylephrine, but not to carbachol, were significantly increased in PNL rats. The levels of NGF protein and mRNA in the bladder of PNL rats were significantly increased compared with sham rats. These results suggest that pudendal nerve neuropathy induced by PNL may be one of the potential risk factors for OAB, as well as SUI. Somato-visceral cross sensitization between somatic (pudendal) and visceral (bladder) sensory pathways that increases NGF expression and α1-adrenoceptor-mediated contractility in the bladder may be involved in this pathophysiological mechanism.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3