Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions

Author:

Potvin J. R.1

Affiliation:

1. Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Potvin, J. R. Effects of muscle kinematics on surface EMG amplitude and frequency during fatiguing dynamic contractions. J. Appl. Physiol. 82(1): 144–151, 1997.—Fifteen male subjects performed a repetitive elbow flexion/extension task with a 7-kg mass until exhaustion. Average joint angle, angular velocity, and biceps brachii surface electromyographic (EMG) amplitude (aEMG) and mean power frequency (MPF) were calculated with each consecutive 250-ms segment of data during the entire trial. Data were separated into concentric or eccentric phases and into seven 20°-ranges from 0 to 140° of elbow flexion. A regression analysis was used to estimate the rested and fatigued aEMG and MPF values. aEMG values were expressed as a percentage of amplitudes from maximum voluntary contractions (MVC). Under rested dynamic conditions, the average concentric aEMG amplitude was 10% MVC higher than average eccentric values. Rested MPF values were similar for concentric and eccentric phases, although values increased ∼20 Hz from the most extended to flexed joint angles. Fatigue resulted in an average increase in concentric and eccentric aEMG of 35 and 10% MVC, respectively. The largest concentric aEMG increases (up to 58% MVC) were observed at higher joint velocities, whereas eccentric increases appeared to be related to decreases in velocity. Fatigue had a similar effect on MPF during both concentric and eccentric phases. Larger MPF decreases were observed at shorter muscle lengths such that values within each angle range were very similar by the end of the trial. It was hypothesized that this finding may reflect a biological minimum in conduction velocity before propagation failure occurs.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3