Respiratory tissue properties derived from flow transfer function in healthy humans

Author:

Tomalak W.1,Peslin R.1,Duvivier C.1

Affiliation:

1. Unité 14 de Physiopathologie Respiratoire, Institut National de la Santé et de la Recherche Médicale, UniversitéH. Poincaré Nancy I, 54500 Vandoeuvre-les-Nancy, France; and National Institute for Tuberculosis and Lung Diseases, Pediatric Division, 34700 Rabka, Poland

Abstract

Tomalak, W., R. Peslin, and C. Duvivier. Respiratory tissue properties derived from flow transfer function in healthy humans. J. Appl. Physiol. 82(4): 1098–1106, 1997.—Assuming homogeneity of alveolar pressure, the relationship between airway flow and flow at the chest during forced oscillation at the airway opening [flow transfer function (FTF)] is related to lung and chest wall tissue impedance (Zti): FTF = 1 + Zti/Zg, where Zg is alveolar gas impedance, which is inversely proportional to thoracic gas volume. By using a flow-type body plethysmograph to obtain flow rate at body surface, FTF has been measured at oscillation frequencies ( f os) of 10, 20, 30 and 40 Hz in eight healthy subjects during both quiet and deep breathing. The data were corrected for the flow shunted through upper airway walls and analyzed in terms of tissue resistance (Rti) and effective elastance (Eti,eff) by using plethysmographically measured thoracic gas volume values. In most subjects, Rti was seen to decrease with increasing f os and Eti,eff to vary curvilinearly with f os 2, which is suggestive of mechanical inhomogeneity. Rti presented a weak volume dependence during breathing, variable in sign according to f os and among subjects. In contrast, Eti,eff usually exhibited a U-shaped pattern with a minimum located a little above or below functional residual capacity and a steep increase with decreasing or increasing volume (30–80 hPa/l2) on either side. These variations are in excess of those expected from the sigmoid shape of the static pressure-volume curve and may reflect the effect of respiratory muscle activity. We conclude that FTF measurement is an interesting tool to study Rti and Eti,eff and that these parameters have probably different physiological determinants.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3